Definitions and key facts for section 4.3

An indexed set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in a vector space V is said to be linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution. Otherwise, the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent, that is, if there exist weights $c_{1}, c_{2}, \ldots, c_{p}$ not all zero, such that

$$
\begin{equation*}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0} \tag{1}
\end{equation*}
$$

In this case, we call (1) a linear dependence relation.

Fact: Characterization of linearly dependent sets A set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

Indeed, if $\mathbf{v}_{1} \neq \mathbf{0}$ and S is linearly dependent then some \mathbf{v}_{j} is a linear combination of the preceding vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}$.
So, a pair of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly dependent if one is a multiple of the other, and linearly independent if neither is a multiple of the other.

Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ in V is a basis for H if

1. \mathcal{B} is a linearly independent set, and
2. the subspace spanned \mathcal{B} is H; that is

$$
H=\operatorname{Span}\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}=\operatorname{Span} \mathcal{B}
$$

Standard Bases:

The standard basis for \mathbb{R}^{n} is the set $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \ldots, \mathbf{e}_{n}\right\}$ containing the columns of I_{n}. Recall

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right], \mathbf{e}_{3}=\left[\begin{array}{c}
0 \\
0 \\
1 \\
\vdots \\
0
\end{array}\right], \quad \cdots \quad, \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right] .
$$

The standard basis for \mathbb{P}^{n} is the set $S=\left\{1, t, t^{2}, \ldots, t^{n}\right\}$.

Fact: Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a spanning set for a subspace H of a vector space V. Then (if $H \neq\{\mathbf{0}\}$) some subset of S is a basis for H.

